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SUMMARY

In this paper we apply a BiGlobal stability analysis technique to measure the stability of two-dimensional
constricted channel �ows to three-dimensional perturbations. Critical Reynolds numbers and spanwise
perturbation wavelengths are presented for three instabilities of steady �ow in constricted channels.
Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The �ow through a constricted channel is an interesting �uid mechanical problem that has
seen renewed interest in the past few decades due to attempts to model the �ow in simpli�ed
arterial geometries. The numerical solution of the �ows in these geometries is not easy,
however. The high local velocities at the constriction and the need for a �ne discretisation
results in a greatly reduced time-step when considering the CFL stability restriction associated
with an explicit treatment of the advection operator. The resulting high computational time
can make a thorough investigation of the many parameters involved such as geometry, in�ow
waveform and Reynolds number, prohibitively expensive.
A BiGlobal stability analysis [1] can alternatively be employed to study the laminar in-

stabilities and transitions occurring within the constriction. Unlike classical stability analysis
where a one-dimensional base �ow is considered and the other two spatial directions are har-
monically expanded, in the BiGlobal stability analysis both the basic state and the amplitude
functions of small-amplitude disturbances superimposed upon the basic state are non-periodic
two-dimensional functions; the third spatial direction is considered homogeneous and expanded
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Figure 1. Geometry of 60% occluded channel stenosis model.

harmonically in Fourier wave numbers �. The method is thus suited to investigation of the
stability of �ows with homogeneity of geometry in one dimension, for example channel,
cylinder or axisymmetric geometries.
It should be noted that in some cases (e.g. the �ow in a straight pipe) a linearized eigenvalue

analysis such as this would predict the �ow to be unconditionally stable at all Re. Under these
circumstances the sensitivity of the �ow to non-modal �nite perturbations can be evaluated
by using a psuedo-spectral technique [2].
In this paper, the geometry we consider is a plane channel geometry, in�nite in the z-

direction, with a prescribed contraction and subsequent re-expansion in the y-direction, shown
with length scales marked in Figure 1. We consider a steady in�ow. Below a Reynolds number
of approximately 125, �ow in the symmetric 60% constricted channel has a unique solution; it
is symmetric and two-dimensional. Above this critical value of Re a primary instability occurs:
a pitchfork bifurcation resulting in one of two stable asymmetric �ows [3]. This instability,
biasing the shear layers shed from the constriction throat to one side, can be attributed to the
Coanda e�ect. If the Re of the two-dimensional asymmetric base �ow is then further increased
then a second critical Reynolds number is reached; a secondary instability occurs that results
in three-dimensionality of the �ow.
In this paper we �rst present a brief introduction to the numerical method involved in

this BiGlobal stability analysis. We then demonstrate how the stability of these primary and
secondary base �ows is a�ected by Re and �. Finally we show how the onset of three-
dimensionality is a�ected by the introduction of asymmetry into the channel geometry. These
results are determined in terms of the value of the dominant eigenvalue (indicating the insta-
bility modal growth rate) as curves of neutral stability in the parameter space (�; Re).

2. NUMERICAL METHODOLOGY

We take as the governing equations for arterial �ow the incompressible Newtonian Navier–
Stokes equations

@u
@t
= −N(u)− ∇p+ 1

Re
∇2u in � (1)

together with the continuity requirement

∇ · u=0 in � (2)

where u is the three-dimensional velocity �eld, p is the �uid pressure, and Re is the Reynolds
number Re = UD=�. For our purposes the length scale D taken in the de�nition of the Reynolds
number is the channel height (see Figure 1), and the velocity scale U is the temporally and
spatially averaged in�ow velocity ( �U ). N(u) is the non-linear advection operator N(u) =
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(u · ∇)u. Equation (1) is subject to no-slip boundary conditions at the walls, a prescribed
plane Poiseuille velocity distribution at the in�ow, and conditions of zero pressure and zero
outward normal derivatives of velocity at the out�ow.
We decompose the instantaneous �ow �eld into a two-dimensional base �ow, U, and a

small perturbation u′:

u(x; y; z; t) = U(x; y; t) + u′(x; y; z; t) (3)

U is a solution of Equation (1) on a two-dimensional computational domain, �, which is
invariant in the z-direction (the direction of homogeneity). For the work of this paper the
base �ow is steady (@U=@t = 0), although it may also be time periodic, in which case a
Floquet stability analysis is applied.
Placing the de�nition (3) into (1) and neglecting as small the terms corresponding to the

product of the small perturbations we arrive at the linearized Navier–Stokes equations:

@u′

@t
= −DN(u′)− ∇p′ +

1
Re

∇2u′ in � (4)

where u′ is again constrained to be divergence free (satisfying (2)), a situation which is
maintained by the perturbation pressure �eld p′. In order to ensure that the disturbance �ow
satis�es the same boundary conditions as the complete �ow, u′ is constrained to be zero at the
Dirichlet boundaries and shares the same out�ow condition as imposed previously on u. DN
is the linearized advection operator:

DN = (u′ · ∇)U+ (U · ∇)u′ (5)

For the case of steady base �ow DN is constant. Equation (4) can be written more compactly
as

@u′

@t
= L(u′) (6)

where the linear operator L(u′) represents the right hand side of (4).
For steady base �ows, solutions of (4) comprise a sum of exponential functions of the

form ũ(x; y; z; t)e�t . We consider the exponents �. A mode is linearly unstable (will grow in
time) if the real part of this exponent is greater than zero.
A simpli�cation to the form of u′ can be made due to the homogeneity of the domain and

the assumption that it is in�nite in the z-direction, by expressing the general perturbation as
the Fourier integral [4]:

u′(x; y; z; t) =
∫ ∞

−∞
û(x; y; �; t)ei�z d� (7)

This also has the e�ect of modifying the gradient operator wherever it is used so
that ∇ ≡ (@=@x; @=@y;−i�). The linearity of (4) ensures that perturbation modes with di�erent
spanwise wave number � do not couple, and thus can be calculated separately.
In order to �nd the dominant (most unstable) exponents we de�ne an operator A describing

the evolution of u′ over an arbitrary period T , chosen for computational convenience:

u′
n+1 = A(u′

n) (8)
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where u′
n is the perturbation �eld after n time-stepping periods of time T . The action of A

is the time integrated e�ect of the operator L on an initially in�nitesimal perturbation over
time T :

A(u′) = exp
(∫ T

0
L(u′) dt

)
(9)

The eigenmodes of A correspond to the instability eigenmodes of the system, ũ. The ex-
ponents, dictating the linear stability of the base �ow in question and corresponding to the
growth rates of the eigenmodes, are calculated via the relation � = (ln(�)=T ), where � is the
eigenvalue of A. Instability occurs when the value of the dominant exponent becomes greater
than zero.
The action of A is approximated by integrating (4) over T=�t time-steps. This is performed

by modi�cation of an existing spectral/hp element solver for solution of the Navier–Stokes
equations (1) on three-dimensional domains with z-direction homogeneity. The non-linear
advection operator N must be replaced with its linearized counterpart DN, and the gradient
operator must be modi�ed as previously stated.
All of the base �ows were calculated using an unsteady two-dimensional spectral/hp Navier–

Stokes solver, on the same meshes as used for the subsequent stability analysis.
The eigenvalues of A are found via the time integration of (4), using the Arnoldi method,

avoiding the high memory requirements of a direct method. For the work in this paper a
low Krylov subspace dimension was used, but su�ciently large for converged eigenvalues
to be obtained. The spectral/hp method of spatial discretisation, chosen for this work for its
favourable convergence properties, is described in the context of stability analysis by Theo�lis
et al. [5]. The calculations in this paper have been performed on stenoses of 60% occlusion,
using symmetric and asymmetric meshes of approximately 1600 elements. All calculations
were performed using a maximum expansion base polynomial order of 6, giving approxi-
mately 78 000 local degrees of freedom per variable.

3. RESULTS AND DISCUSSION

3.1. Base �ow characteristics

Figure 2(a) shows the vorticity contours of the steady symmetric base �ow at approximately
the point of bifurcation, Re = 125. This �ow was generated using a symmetric boundary
condition along the channel centre-line and as such may be unstable to two-dimensional
perturbations. The �ow is unable to expand rapidly enough to follow the curve of the wall
as it leaves the constriction, and instead separates symmetrically. From the vorticity plot of
Figure 2(a) we observe the growth of two boundary layer regions in the contraction, which
separate into two shear layers trailing downstream of the expansion. The separation points are
clearly visible in Figure 2(b). These separated shear layers provide the boundaries between
the jet-type �ow emanating from the constriction, and two recirculation regions driven by the
jet.
Figure 2(b) shows streamlines of the symmetric �ow. The recirculation regions on either

side of the jet are clearly visible, attached to the top and bottom surfaces of the channel,
immediately downstream of the constriction. As the jet progresses away from the stenosis,
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Figure 2. Base �ows: (a) vorticity contours and (b) streamlines of symmetrically constrained �ow in
symmetric geometry at Re=125; (c) and (d) unconstrained �ow in symmetric geometry at Re=300;

and (e) and (f) �ow in asymmetric geometry at Re=250.

it expands to reattach to the upper and lower channel walls, and the axial velocity pro�le
asymptotes to that of fully developed Poiseuille �ow under the e�ect of viscous momentum
di�usion. After the �ow has travelled only 11 channel diameters from the constriction throat
the peak �ow velocity across the channel has returned to the fully developed non-dimensional
value of 1.5 (to three signi�cant �gures), and measurements taken at stations further down-
stream show no signi�cant deviation from this pro�le.
Figure 2(c) shows the vorticity �eld in the unconstrained base �ow in the symmetric

geometry, near the onset of the secondary instability, at a Reynolds number of 300. In order
to investigate the onset of three-dimensionality the �ow is constrained to be two-dimensional,
implicit in the formulation of the two-dimensional �ow solver. It is transparent that the �ow
�eld is extremely asymmetric, as the jet veers steeply downward upon exiting the constriction.
The streamlines (Figure 2(d)) show the same deviation of the bulk momentum, and also show
the imbalance of the sizes of the two recirculation regions. The greatest downward de�ection
of the jet occurs at 3D from the constriction, and it is then de�ected upward to a maximum
y-position at approximately 7D before slowly settling back to the central position of the
Poiseuille �ow at approximately 27D from the throat.
Figures 2(e) and (f) show the base �ow in the asymmetric 60% constricted geometry

at Re = 250. The base �ow is much like the asymmetric �ow in the symmetric geometry,
although the jet adheres to the top surface immediately after the constriction. There is therefore
no recirculation cell on the upper surface at this point.

3.2. Linearised stability analysis

Figure 3(a) shows the neutral linearized stability curve for the primary instability. It can be
seen that symmetry breaking within the plane will occur at a critical Re just below 125.
The curve of Figure 3(a) implies that this occurs with an instability wavelength that is non-
zero, introducing a mild three-dimensionality to the �ow. However, the shape of the curve
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Figure 3. Neutral stability curves: (a) symmetrically constrained �ow in symmetric
geometry; (b) unconstrained �ow in symmetric geometry following primary instability;

and (c) �ow in asymmetric geometry. Shaded regions are linearly unstable.

indicates that the �ow becomes rapidly linearly unstable to a wide range of �, including
two-dimensional perturbations, and it should be noted that stable two-dimensional �ows exist
beyond this Re. This value of the critical Re is in accord with experimental studies [6], and
two-dimensional simulations with no in-plane constraint.
Figure 3(b) shows the neutral stability curve for the dominant mode leading to the onset

of three-dimensionality. In this case the critical Re is approximately 290, occurring with a
spanwise wave number of 1.6, or approximately 4D.
Figure 3(c) shows the curve for the onset of three-dimensionality in the asymmetric ge-

ometry. The critical Re is approximately 235 in this case. Thus for steady �ow the e�ect of
geometrical asymmetry is clearly destabilising. Also, the instability occurs at a higher wave
number (≈ 2:2), corresponding to a shorter instability wavelength of 2.9D, although the degree
of constriction is the same in both cases.

4. CONCLUSIONS

We have successfully isolated the critical Reynolds numbers and spanwise wave numbers
for three linear instabilities of steady constricted channel �ows, and shown the e�ect of
constriction asymmetry to be destabilising. In addition, the calculations furnish us with full
details of the instability modes arising.
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